skip to main content


Search for: All records

Creators/Authors contains: "Blake, Geoffrey A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a sensitive imaging method capable of the selective characterization of the nonlinear THz beam profile, providing a direct handle to optimizeχ(3)light-matter interactions that are critical to two-dimensional (2D) THz spectroscopies. In particular, this method facilitates the development of experimentally challenging 2D THz spectroscopies with multiple THz emitters, which enables direct investigations of fast picosecond dynamics in liquids and solids that are challenging in single-emitter 2D THz spectroscopic setups.

     
    more » « less
  2. Abstract

    Molecular emission is used to investigate both the physical and chemical properties of protoplanetary disks. Therefore, to derive disk properties accurately, we need a thorough understanding of the behavior of the molecular probes upon which we rely. Here we investigate how the molecular line emission of N2H+, HCO+, HCN, and C18O compare to other measured quantities in a set of 20 protoplanetary disks. Overall, we find positive correlations between multiple line fluxes and the disk dust mass and radius. We also generally find strong positive correlations between the line fluxes of different molecular species. However, some disks do show noticeable differences in the relative fluxes of N2H+, HCO+, HCN, and C18O. These differences occur even within a single star-forming region. This results in a potentially large range of different disk masses and chemical compositions for systems of similar age and birth environment. While we make preliminary comparisons of molecular fluxes across different star-forming regions, more complete and uniform samples are needed in the future to search for trends with birth environment or age.

     
    more » « less
  3. Abstract

    Two-dimensional spectroscopic techniques combining terahertz (THz), infrared (IR), and visible pulses offer a wealth of information about coupling among vibrational modes in molecular liquids, thus providing a promising probe of their local structure. However, the capabilities of these spectroscopies are still largely unexplored due to experimental limitations and inherently weak nonlinear signals. Here, through a combination of equilibrium-nonequilibrium molecular dynamics (MD) and a tailored spectrum decomposition scheme, we identify a relationship between the tetrahedral order of liquid water and its two-dimensional IR-IR-Raman (IIR) spectrum. The structure-spectrum relationship can explain the temperature dependence of the spectral features corresponding to the anharmonic coupling between low-frequency intermolecular and high-frequency intramolecular vibrational modes of water. In light of these results, we propose new experiments and discuss the implications for the study of tetrahedrality of liquid water.

     
    more » « less
  4. Abstract

    We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions oflogH2O=2.00.4+0.4andlogCO=2.20.5+0.5, and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  5. Abstract We explore terrestrial planet formation with a focus on the supply of solid-state organics as the main source of volatile carbon. For the water-poor Earth, the water ice line, or ice sublimation front, within the planet-forming disk has long been a key focal point. We posit that the soot line, the location where solid-state organics are irreversibly destroyed, is also a key location within the disk. The soot line is closer to the host star than the water snow line and overlaps with the location of the majority of detected exoplanets. In this work, we explore the ultimate atmospheric composition of a body that receives a major portion of its materials from the zone between the soot line and water ice line. We model a silicate-rich world with 0.1% and 1% carbon by mass with variable water content. We show that as a result of geochemical equilibrium, the mantle of these planets would be rich in reduced carbon but have relatively low water (hydrogen) content. Outgassing would naturally yield the ingredients for haze production when exposed to stellar UV photons in the upper atmosphere. Obscuring atmospheric hazes appear common in the exoplanetary inventory based on the presence of often featureless transmission spectra. Such hazes may be powered by the high volatile content of the underlying silicate-dominated mantle. Although this type of planet has no solar system counterpart, it should be common in the galaxy with potential impact on habitability. 
    more » « less
  6. Abstract

    We present Keck Planet Imager and Characterizer (KPIC) high-resolution (R∼35,000)K-band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO (logCOMMR=1.10.6+0.4), H2O (logH2OMMR=4.10.9+0.7), and OH (logOHMMR=2.11.1+0.5), suggesting near-complete dayside photodissociation of H2O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of0.80.2+0.1, consistent with the accretion of high-metallicity gas near the CO2snow line and post-disk migration or with accretion between the soot and H2O snow lines. We also find tentative evidence for12CO/13CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques.

     
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  7. Abstract

    M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and findMB=88.03.2+3.4MJup, putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star witha=383+4au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detectH218O(3.7σsignificance) in the companion’s atmosphere and measure12CO/13CO=9822+28andH216O/H218O=24080+145after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure12CO/13CO=7916+21andC16O/C18O=28870+125for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO andH218Oabundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.

     
    more » « less
  8. Abstract

    The Orion Kleinmann-Low nebula (Orion KL) is notoriously complex and exhibits a range of physical and chemical components. We conducted high-angular-resolution (subarcsecond) observations of13CH3OHν= 0 (∼0.″3 and ∼0.″7) and CH3CNν8= 1 (∼0.″2 and ∼0.″9) line emission with the Atacama Large Millimeter/submillimeter Array (ALMA) to investigate Orion KL’s structure on small spatial scales (≤350 au). Gas kinematics, excitation temperatures, and column densities were derived from the molecular emission via a pixel-by-pixel spectral line fitting of the image cubes, enabling us to examine the small-scale variation of these parameters. Subregions of the Hot Core have a higher excitation temperature in a 0.″2 beam than in a 0.″9 beam, indicative of possible internal sources of heating. Furthermore, the velocity field includes a bipolar ∼7–8 km s−1feature with a southeast–northwest orientation against the surrounding ∼4–5 km s−1velocity field, which may be due to an outflow. We also find evidence of a possible source of internal heating toward the Northwest Clump, since the excitation temperature there is higher in a smaller beam versus a larger beam. Finally, the region southwest of the Hot Core (Hot Core-SW) presents itself as a particularly heterogeneous region bridging the Hot Core and Compact Ridge. Additional studies to identify the (hidden) sources of luminosity and heating within Orion KL are necessary to better understand the nebula and its chemistry.

     
    more » « less
  9. Abstract

    Gas mass is a fundamental quantity of protoplanetary disks that directly relates to their ability to form planets. Because we are unable to observe the bulk H2content of disks directly, we rely on indirect tracers to provide quantitative mass estimates. Current estimates for the gas masses of the observed disk population in the Lupus star-forming region are based on measurements of isotopologues of CO. However, without additional constraints, the degeneracy between H2mass and the elemental composition of the gas leads to large uncertainties in such estimates. Here, we explore the gas compositions of seven disks from the Lupus sample representing a range of CO-to-dust ratios. With Band 6 and 7 ALMA observations, we measure line emission for HCO+, HCN, and N2H+. We find a tentative correlation among the line fluxes for these three molecular species across the sample, but no correlation with13CO or submillimeter continuum fluxes. For the three disks where N2H+is detected, we find that a combination of high disk gas masses and subinterstellar C/H and O/H are needed to reproduce the observed values. We find increases of ∼10–100× previous mass estimates are required to match the observed line fluxes. This work highlights how multimolecular studies are essential for constraining the physical and chemical properties of the gas in populations of protoplanetary disks, and that CO isotopologues alone are not sufficient for determining the mass of many observed disks.

     
    more » « less